To solve the s wave Schrodinger equation for the ground state & the first excited state of the hydrogen atom d2y/dx2=A(r)U(r); A(r)=8mPie2/h2[V(r)-E];V(r)=-e2/r, where is m is reduced mass of electron. Find the energy eigen value & plot the corresponding wave functions. Take ground state energy of hydrogen atom is -13.6eV, hc=12400eVA0 & m=0.511x106 eV/c2.
Coding:
h=1973 m=0.511e6 n=200 r0=1e-15 rm=10 e=3.795 r=linspace(r0,rm,n) d=(rm-r0)/n A=zeros(n,n) V=zeros(n,n) A(1,[1:2])=[-2,1]; A(n,[n-1:n])=[1,-2]; for i=2:n-1 A(i,[i-1:i+1])=[1,-2,1]; end for i=1:n V(i,i)=((e.^2)/r(i)); V1(i)=(-(e.^2)/r(i)); end H=((h.^2)/(2*m*d*d)*A)+V [y,eig]=spec(H) subplot(2,2,1) for i=10:n plot(r(i),V1(i),'y+') xlabel("X-AXIS") ylabel("Y-AXIS") end disp(eig(n-1,n-1)) disp(eig(n-2,n-2)) disp(eig(n-3,n-3)) subplot(2,2,2) plot(r,abs(y(:,n-1)),'r') xlabel("X-AXIS") ylabel("Y-AXIS") subplot(2,2,3) plot(r,abs(y(:,n-2)),'b') xlabel("X-AXIS") ylabel("Y-AXIS") subplot(2,2,4) plot(r,abs(y(:,n-2)),'g') xlabel("X-AXIS") ylabel("Y-AXIS") subplot(2,2,5) legend('y,ground state n=1,y2 first n=2,l=0')
OUTPUT:
Read Spiritual Article & Manage Your Time & act likeTimeless
Model syllabus (+3): Downoad
List of all practicals(+3): Download
Get all Books: DownloadFor online classes & notes, Contact: quantaphysics3@gmail.com
Join Telegram: quantaphysics.comSubscribe Youtube: BS quantaphysicsNOTES:References: wikipedia, byjus, tutorialspointFor online classes & notes, Contact: quantaphysics3@gmail.comJoin Telegram: quantaphysics.comSubscribe Youtube: BS quantaphysics
Post a Comment